Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Brisque changes #6

Open
wants to merge 1 commit into
base: restructure2
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 6 additions & 3 deletions live_python_qa/brisque.py
Original file line number Diff line number Diff line change
@@ -1,14 +1,17 @@
from .utils import compute_image_mscn_transform, extract_subband_feats

from .imresize import imresize
import numpy as np
import cv2


# TODO: Compare with Matlab


def brisque(image):
y_mscn = compute_image_mscn_transform(image)
half_scale = cv2.resize(image, dsize=(0, 0), fx=0.5, fy=0.5, interpolation=cv2.INTER_LANCZOS4)
half_scale = imresize(image, scalar_scale = 0.5, method = 'bicubic')
y_half_mscn = compute_image_mscn_transform(half_scale)
feats_full = extract_subband_feats(y_mscn)
feats_half = extract_subband_feats(y_half_mscn)
return np.concatenate((feats_full, feats_half))


149 changes: 149 additions & 0 deletions live_python_qa/imresize.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,149 @@
"""
Matlab Interpolation in Python taken from https://github.com/fatheral/matlab_imresize

"""

from __future__ import print_function
import numpy as np
from math import ceil, floor

def deriveSizeFromScale(img_shape, scale):
output_shape = []
for k in range(2):
output_shape.append(int(ceil(scale[k] * img_shape[k])))
return output_shape

def deriveScaleFromSize(img_shape_in, img_shape_out):
scale = []
for k in range(2):
scale.append(1.0 * img_shape_out[k] / img_shape_in[k])
return scale

def triangle(x):
x = np.array(x).astype(np.float64)
lessthanzero = np.logical_and((x>=-1),x<0)
greaterthanzero = np.logical_and((x<=1),x>=0)
f = np.multiply((x+1),lessthanzero) + np.multiply((1-x),greaterthanzero)
return f

def cubic(x):
x = np.array(x).astype(np.float64)
absx = np.absolute(x)
absx2 = np.multiply(absx, absx)
absx3 = np.multiply(absx2, absx)
f = np.multiply(1.5*absx3 - 2.5*absx2 + 1, absx <= 1) + np.multiply(-0.5*absx3 + 2.5*absx2 - 4*absx + 2, (1 < absx) & (absx <= 2))
return f

def contributions(in_length, out_length, scale, kernel, k_width):
if scale < 1:
h = lambda x: scale * kernel(scale * x)
kernel_width = 1.0 * k_width / scale
else:
h = kernel
kernel_width = k_width
x = np.arange(1, out_length+1).astype(np.float64)
u = x / scale + 0.5 * (1 - 1 / scale)
left = np.floor(u - kernel_width / 2)
P = int(ceil(kernel_width)) + 2
ind = np.expand_dims(left, axis=1) + np.arange(P) - 1 # -1 because indexing from 0
indices = ind.astype(np.int32)
weights = h(np.expand_dims(u, axis=1) - indices - 1) # -1 because indexing from 0
weights = np.divide(weights, np.expand_dims(np.sum(weights, axis=1), axis=1))
aux = np.concatenate((np.arange(in_length), np.arange(in_length - 1, -1, step=-1))).astype(np.int32)
indices = aux[np.mod(indices, aux.size)]
ind2store = np.nonzero(np.any(weights, axis=0))
weights = weights[:, ind2store]
indices = indices[:, ind2store]
return weights, indices

def imresizemex(inimg, weights, indices, dim):
in_shape = inimg.shape
w_shape = weights.shape
out_shape = list(in_shape)
out_shape[dim] = w_shape[0]
outimg = np.zeros(out_shape)
if dim == 0:
for i_img in range(in_shape[1]):
for i_w in range(w_shape[0]):
w = weights[i_w, :]
ind = indices[i_w, :]
im_slice = inimg[ind, i_img].astype(np.float64)
outimg[i_w, i_img] = np.sum(np.multiply(np.squeeze(im_slice, axis=0), w.T), axis=0)
elif dim == 1:
for i_img in range(in_shape[0]):
for i_w in range(w_shape[0]):
w = weights[i_w, :]
ind = indices[i_w, :]
im_slice = inimg[i_img, ind].astype(np.float64)
outimg[i_img, i_w] = np.sum(np.multiply(np.squeeze(im_slice, axis=0), w.T), axis=0)
if inimg.dtype == np.uint8:
outimg = np.clip(outimg, 0, 255)
return np.around(outimg).astype(np.uint8)
else:
return outimg

def imresizevec(inimg, weights, indices, dim):
wshape = weights.shape
if dim == 0:
weights = weights.reshape((wshape[0], wshape[2], 1, 1))
outimg = np.sum(weights*((inimg[indices].squeeze(axis=1)).astype(np.float64)), axis=1)
elif dim == 1:
weights = weights.reshape((1, wshape[0], wshape[2], 1))
outimg = np.sum(weights*((inimg[:, indices].squeeze(axis=2)).astype(np.float64)), axis=2)
if inimg.dtype == np.uint8:
outimg = np.clip(outimg, 0, 255)
return np.around(outimg).astype(np.uint8)
else:
return outimg

def resizeAlongDim(A, dim, weights, indices, mode="vec"):
if mode == "org":
out = imresizemex(A, weights, indices, dim)
else:
out = imresizevec(A, weights, indices, dim)
return out

def imresize(I, scalar_scale=None, method='bicubic', output_shape=None, mode="vec"):
if method is 'bicubic':
kernel = cubic
elif method is 'bilinear':
kernel = triangle
else:
print ('Error: Unidentified method supplied')

kernel_width = 4.0
# Fill scale and output_size
if scalar_scale is not None:
scalar_scale = float(scalar_scale)
scale = [scalar_scale, scalar_scale]
output_size = deriveSizeFromScale(I.shape, scale)
elif output_shape is not None:
scale = deriveScaleFromSize(I.shape, output_shape)
output_size = list(output_shape)
else:
print ('Error: scalar_scale OR output_shape should be defined!')
return
scale_np = np.array(scale)
order = np.argsort(scale_np)
weights = []
indices = []
for k in range(2):
w, ind = contributions(I.shape[k], output_size[k], scale[k], kernel, kernel_width)
weights.append(w)
indices.append(ind)
B = np.copy(I)
flag2D = False
if B.ndim == 2:
B = np.expand_dims(B, axis=2)
flag2D = True
for k in range(2):
dim = order[k]
B = resizeAlongDim(B, dim, weights[dim], indices[dim], mode)
if flag2D:
B = np.squeeze(B, axis=2)
return B

def convertDouble2Byte(I):
B = np.clip(I, 0.0, 1.0)
B = 255*B
return np.around(B).astype(np.uint8)
4 changes: 2 additions & 2 deletions live_python_qa/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,12 +41,12 @@ def estimateggdparam(vec):
r_gam = (gamma(1.0/gam)*gamma(3.0/gam))/((gamma(2.0/gam))**2)
# print(np.mean(vec))
sigma_sq = np.mean(vec**2) #-(np.mean(vec))**2
sigma = np.sqrt(sigma_sq)
#sigma = np.sqrt(sigma_sq)
Comment on lines 42 to +44
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

If sigma is not being used, let's remove these commented lines. Same on lines 42 and 43, and any other unnecessary comments.

E = np.mean(np.abs(vec))
rho = sigma_sq / (E**2 + 1e-6)
array_position = (np.abs(rho - r_gam)).argmin()
alphaparam = gam[array_position]
return alphaparam, sigma
return alphaparam, sigma_sq
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Let's make sure that every function that uses estimateggdparam is updated to reflect this change.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@avinabsaha in the MATLAB version was the second feature sigma^2 or sigma?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

sigma^2.
You can check here: https://github.com/utlive/BRISQUE/blob/bd088c3f6b745629caa02f663e4665cb51591ac0/MATLAB/brisque_feature.m#L21

In the Matlab code, estimateggdparam returns sigma but in the brisque_feature.m it is squared and added to the feature vector. Even the paper mentions using sigma^2.

I will check for compatibility with NIQE by the weekend and update the code.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks for catching that!



def compute_image_mscn_transform(image, C=1, avg_window=None, extend_mode='constant'):
Expand Down